
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

 CODEN:LUTEDX/(TEIE-5353)/1-65(2015)

Flexible Product Testing Using an

Articulated Robot System Equipped with

a Real-Time Force and Torque Sensor

Ulf Tronde

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

 1

Flexible product testing using an
articulated robot system equipped with

a real-time force and torque sensor

Master Thesis by
Ulf Tronde

Division of Industrial Electrical Engineering and

Automation (IEA)

Supervisor IEA: Gunnar Lindstedt
Supervisor CRS Robotics: Göran Lasson

Examinator IEA: Ulf Jeppsson

Faculty of Engineering
Lund University

May 2015

 2

Abstract

Car manufacturers have traditionally tested new products using intricate, but
not very flexible, mechanical devices. The test methods have been designed
to check that e.g. the user interfaces and controls work properly in various
kinds of climates and environments and have a life expectancy that is
adequate. It has however been difficult to test that the controls have the
desired feeling. As of today the only way of testing the feeling of a control
is to let a test panel, consisting of a couple of persons, operate it and report
the feeling. This will result in a very subjective statement that will highly
depend on the test persons. The term feeling is difficult to define, but two
natural properties of feeling are the force and torque required to operate the
control.

The objective of this master thesis was to develop and evaluate a flexible,
objective and standardized method to measure force and torque during
product testing, using an articulated robot system equipped with a force and
torque sensor. A couple of ordinary electrical push buttons and rotary
switches were selected to represent the various types of controls.

A test method comprising the robot system, software with graphical user
interface and various control systems were developed. Several tests were
performed on the selected test objects. The results demonstrated that it was
possible to measure the force and the torque required to operate the push
buttons and rotary switches and that they displayed unique profiles. It was
also possible to measure the required energy to operate the controls. The
results were repeatable over time and showed little variance.

From the performed tests and result analysis, it was concluded that it is
possible to measure the test objects as desired with a flexible, objective and
standardized method using the articulated robot system equipped with a
force and torque sensor. Test objects can be measured and compared to
standard objects, which have a desired feeling and the test method has the
potential to replace current subjective product tests and improve the
development and testing of user interfaces in cars.

 3

Preface

Perspectives over Time

The Master Thesis work was performed late 1996 to early 1997, which was
18 years ago. At that time the IT sector had just started for real and since
that time there has been a tremendous development and also the introduction
of completely new platforms. The car industry has of course also had a large
development, but compared to the IT sector it has been modest.

In the car industry there is still a demand for user tests like the one
developed in this work. The interior of the car contains a majority of the
user interfaces that existed 18 years ago. The introduction of touch screens
is the major exception and will probably revolutionize the industry in the
next years to come. Nonetheless, the problem definition and approach in this
thesis is still very much valid.

The computer platforms and software used in this work have certainly
evolved, but all of them are still available in new versions and are widely
used. The same is true for the robot system. Below is a list of the different
components and the status of today.

• The small laboratory and industrial robots from CRS Robotics are
available in newer versions from Thermo Fisher Scientific. The
specifications for their robot F5 are very similar to that of the A465,
with improved repeatability and strength. The software controlling
the robot is more user friendly;

• The force and torque sensors are still available from the same
manufacturer;

• Personal computers (PC) using Microsoft Windows are still in use,
just much more powerful;

• Excel and the included VBA macros are still widely spread and used
and DDE is also still used within Microsoft Windows and Microsoft
applications. The VBA code would have to be adjusted for new
syntax codes and communication protocols.

In summary, it is my belief that this Master Thesis work still is of interest
today with rather much the same problem definition and approach as well as
result. Another aspect of course is the reflection that it would just have been
so much easier to finalize and present the report 18 years ago…

Ulf Tronde, 21 May 2015

 4

Acknowledgments

I would like to thank my supervisors at the Division of Industrial Electrical
Engineering and Automation (IEA): Gunnar Lindstedt and Gustaf Olsson;
my supervisor at CRS Robotics: Göran Lasson; and my examinator at IEA:
Ulf Jeppsson.
Also thanks to Ulf Edvardsson, Volvo Product & Process Engineering
Division, for supplying test specimens and helping to define the background
of the work.
My greatest gratitude though, goes to my wife Ann who has been supporting
and encouraged me to finally complete this master thesis report!

 5

Abbreviations and Terms

Accuracy (Pose Accuracy) Deviation between the commanded

pose and the attained pose when
approaching the commanded pose
from the same direction.

A/D converter Analog to Digital conversion

Articulated Means ‘equipped with joints’

ASCII American Standard Code for

Information Interchange. The code
is used in computer communication
and represents text. It encodes 128
specific characters.

bps Bits per second

CPU Central Processing Unit

DDE Dynamic Data Exchange. Protocol

used for communication and data
sharing between applications in
Windows.

DOF Degrees of Freedom

FLASH EPROM Non-volatile memory. Contains

firmware and settings that remains
also after power is removed.

LCD Liquid Crystal Display

Opto-isolated connector A connector with a built-in light

emitter and receiver, which makes
it galvanically isolated.

PC Personal Computer

PID Proportional Integral Derivative.

An algorithm that uses three terms
consisting of the proportional, the
integral and the derivative values to
control a process.

 6

PLC Programmable Logic Controller.
A computer or application
specifically designed for
controlling automation.

RAM Random Access Memory. A

volatile memory where data can be
read and written with high speed.
The data is lost when power is
removed.

Repeatability (Pose repeatability) Closeness of agreement between

the positions and orientations of the
attained poses after n repeated
visits to the same commanded pose
in the same direction.

RISC Reduced Instruction Set

Computing. A microprocessor
architecture where the number of
instructions are reduced to improve
processing speed.

RS232 A serial communication standard

VB Visual Basic. A programming

language from Microsoft. Programs
designed in VB can be used as
stand alone applications.

VBA Visual Basic for Applications.

Similar to VB and is built into most
Microsoft Office applications. It
can normally only be used within a
host application.

 7

Table of Contents
	

Abstract	 2	
Preface	 3	
Acknowledgments	 4	
Abbreviations	 and	 Terms	 5	
Table	 of	 Contents	 7	
1.	 Introduction	 9	
1.1.	 Research	 and	 Development	 at	 Volvo	 9	
1.2.	 Problem	 Definition	 and	 Objectives	 10	
1.3.	 Flexible	 Systems	 for	 Product	 Testing	 10	
1.4.	 Overview	 of	 the	 Thesis	 11	

2.	 Problem	 Approach	 12	
2.1.	 Measurement	 Situation	 12	
2.2.	 Desired	 Measurement	 Procedure	 13	

3.	 The	 Robot	 System	 14	
3.1.	 The	 Robot	 Arm	 14	
3.2.	 The	 Robot	 Controller	 16	
3.3.	 System	 Software	 17	
3.4.	 Host	 Computer	 18	

4.	 The	 Real-‐Time	 Force	 and	 Torque	 Sensor	 System	 20	
4.1.	 The	 Transducer	 20	
4.2.	 The	 F/T	 Controller	 21	

5.	 Supervisory	 Computer	 System	 23	
5.1.	 Hardware	 23	
5.2.	 Software	 Platform	 23	

6.	 Test	 Implementation	 24	
6.1.	 Test	 Objects	 24	
6.2.	 Hardware	 25	
6.3.	 Software	 27	

7.	 Test	 Results,	 Analysis	 and	 Conclusions	 31	
7.1.	 Test	 Results	 -‐	 Push	 Buttons	 31	
7.2.	 Analysis	 -‐	 Push	 Buttons	 36	
7.3.	 Test	 Results	 –	 Rotary	 Switches	 37	
7.4.	 Analysis	 –	 Rotary	 Switches	 41	
7.5.	 Conclusions	 41	

8.	 Discussion	 42	
8.1.	 Future	 Perspectives	 42	
8.2.	 Specific	 Challenges	 42	

9.	 References	 44	
	
	 	

 8

Appendix	 A	
Visual	 Basic	 Application	 (VBA)	 Code	

	
Appendix	 B	

Robot	 Code	 (RAPL-‐2	 Code)	
	
Appendix	 C	

Formulas	 and	 Conversions	
	

	

 9

1. Introduction

1.1. Research and Development at Volvo
Volvo, the largest car manufacturer in Sweden, has a research department
entirely designated for testing the electrical systems and user interfaces
incorporated in the company’s car fleet. The user interface comprises all of
the controls available to the driver and the passengers to operate the car.
Some examples are the steering wheel, the pedals, the gear lever and the
abundance of electrical switches, adjustment levers and knobs. In an
ordinary car today, there are about 50 to 80 of these different controls. Also
included in the term user interface is the presentation system informing the
driver about the status of the car and the environment.

This research department closely cooperates with the departments
responsible for design and development of the equipment mentioned above.
In the process of developing new controls, there has to be an interaction
between the two departments to ensure that the products meet the required
quality standards. For instance that they work properly in various kinds of
climates and environments during their entire life-span and have a life-
expectancy that is adequate, but also that the controls have the desired
feeling. The former properties are currently tested in the laboratories by
intricate, but not very flexible, mechanical devices and in climate-chambers
and this is fairly simple and straightforward. The testing of the latter
property, the feeling, presents a far more difficult problem. As of today the
only way of testing the feeling of a control is to let a test panel, consisting of
a couple of persons, operate it and report the feeling. This, of course, will
result in a very subjective statement that will highly depend on the test
person. Even the term feeling is very hard to pinpoint. It could for example
be the force required to activate a switch, how the surface texture on the
switch is experienced or if it conveys a sense of good quality to the user. A
rough definition of the term feeling could be the summarized impression the
consumer experience when using the product.

Traditionally when a new product is developed, a couple of prototypes are
manufactured by a sub-contractor and then tested manually by Volvo to
determine if it has the desired feeling. If not, it will be sent back to the
manufacturer and readjusted. This process can sometimes be repeated
several times and costs a lot of time, money and efforts. When the product
eventually is accepted it will be mounted in a car together with several other
controls and then yet another problem occurs. Since each of the controls has
been tested individually with subjective methods, the different controls in a
car might not have the same feeling. This imposes a great problem because
a car manufacturer wants the cars to constitute a specific concept.
Everything in the car should follow this concept. If a car is intended to give
the driver the impression of high quality, then all the controls should also
have a sensation of high quality to them.

If it was at all possible to isolate a few parameters that strongly influence
the feeling of a control and if it furthermore existed a way of measuring

 10

these parameters, the matter of ordering products from sub-contractors and
ensuring a uniform feeling would be much easier. In the same way as Volvo
today can specify the design, function and quality of a product that is
ordered from a sub-contractor, Volvo would also be able to specify the
desired feeling of the product. Once a product is ordered, it would be the
responsibility of the sub-contractors that the product fulfills the specification
of those parameters.

Furthermore, it would be desirable if the test method were adaptable to
different types of controls. The mechanical devices that are used today for
expected lifetime and function testing are constructed for a single purpose
only and for a specific control. When a new control type is to be subjected
to testing, a completely new mechanical test device has to be constructed.
This is very expensive and time consuming.

1.2. Problem Definition and Objectives
In the previous Section it was concluded that it would be desirable if some
important parameters could be extracted from the term feeling and if there
was an adaptable method to measure these parameters. In the case of a push
button switch for example, two obvious parameters are the force and the
depression distance required for operating it and in the case of a rotary
switch, two other natural parameters are the torque and the rotation angle.
When studying other types of controls, it seems as if these particular
parameter-pairs form the basis. In consideration of the desire to work out a
flexible test method for measuring force, torque and adherent positions and
angles, it appears to be a natural step to use a small industrial robot system
that has the ability to do these types of measurements.

The main objective of this master thesis is to develop and evaluate a suitable
and standardized method to measure force and torque during product
testing, using an articulated robot system equipped with a force and torque
sensor.

1.3. Flexible Systems for Product Testing
The articulated robot system from CRS Robotics Corporation is designed
for a diversified field of applications. Since it is easily reprogrammed and
reconfigured, it provides a very flexible method to automate industrial tasks,
such as in this case product testing. Currently, the customary method to test
products is to use equipment developed for one particular type of test and
often these tests have to be performed manually. By instead using a robot
system, a much more adaptable method can be derived and by eliminating
the need for manual manipulation, the tests should be more accurate and
repetitive.

When the robot system is equipped with a force and torque sensor, it has the
ability to not only perform traditional product testing, like function and life

 11

time testing, but also to measure force and torque in real-time during these
tasks.

1.4. Overview of the Thesis
Chapter 1 provides the background for the study and in Chapter 2 the
problem of finding reasonable measurement methods for different types of
controls is discussed together with a description of the desired measurement
procedure. An outline of the robot system, both hardware and software, is
found in Chapter 3. In Chapter 4 the force and torque sensor is described
and Chapter 5 treats the supervisory computer system. The entire integration
of the equipment and the test procedure is covered in Chapter 6 and in
Chapter 7 the results are presented and analyzed and the chapter also
contains the conclusions. In Chapter 8 the study is discussed providing
topics for future works and specific challenges encountered.
The programming code is attached in Appendices A and B, and formulas
and conversions are found in Appendix C.

 12

2. Problem Approach
In Section 1.2 it was pointed out that the two basic operations when
interacting with the car controls are pushing (or pulling) and rotation.
Examples of the former are activation of an electrical pushbutton, changing
the gear, and maneuvering the windshield wiper stick. Examples of the latter
are turning of knobs and turning the steering wheel. In order to limit the
extent of the thesis, a couple of ordinary electrical push buttons and rotary
switches were selected to represent the various types of controls. In Section
2.1 the measurement situation will be described and in Section 2.2 some
ideas of the desired measurement procedure are developed.

2.1. Measurement Situation
Volvo provided a set of different buttons, switches and levers. In order to
narrow the scope of the work, 4 push buttons and 3 rotary switches were
selected for further tests.

A reasonable test cycle for the push buttons would be to push down on the
button and at the same time measure the required force. By recording the
distance travelled and the equivalent required force at that particular
distance, the test result would consist of an array with distance-force pairs.
The ideal velocity when pushing down on the button would probably be
rather high to match real-life operation, but this will unfortunately demand a
very fast sampling rate. If the required force is a function of the velocity, the
result will of course be influenced. Nevertheless, since the purpose of the
test is to establish some kind of measure of feeling that is comparable with
other tests, it was assumed that as long as all the tests were made using the
same motion velocity, the requirement for high velocity could be
disregarded.

A conceivable test cycle for the rotary switches would in this case be to turn
the rotary switch and at the same time measure the angle and the equivalent
torque. Here the test result would be an array of angle-torque pairs. The
same reasoning, concerning the motion velocity, that was conducted for the
push buttons is assumed to be valid also for rotary switches.

 13

2.2. Desired Measurement Procedure
The desired system should be able to perform safe and reproducible tests
with minimal interference from the operator. By selecting a specific type of
test and placing the test object in a predetermined position and then
activating the system, it should, by itself, perform one or more test cycles
and then process the result and finally present it to the operator. A brief
summary of the desired elements included in the measurement procedure is
as follows:

(• : performed by the operator)
(- : performed by the system)

• Place test object in a predetermined position
• Select type of measurement (push button or rotary switch)
• (Option: Select number of cycles, motion velocity, etc.)
• Start the test

- Execute the test cycle(s) and sample distance-force or angle-
torque

- Perform necessary signal processing and conversions
- Save the result in a computer file
- Process the data (compute averages and statistics, etc.)
- Present the result

• Select desired presentation form (data, diagram, etc.)
• Save, print or compare test objects
• Chose to continue testing or to shut down

 14

3. The Robot System
The robot system was provided by CRS Robotics Nordic AB, Lund,
Sweden. Head office: CRS Robotics Corporation, Burlington, Ontario,
Canada. (Current name: Thermo Fisher Scientific, Waltham, Massachusetts,
USA). The system (Figure 3.a) is composed of several essential parts. The
robot arm is described in Section 3.1. The robot controller unit and the
operating system that resides inside it and regulates the robot arm are
covered in Section 3.2. The user available software is treated in Section 3.3
and finally the host computer that can be utilized as an extended terminal to
manage the software and supervise the system is described in Section 3.4.

Figure 3.a. The robot system A465 from CRS Robotics Corporation.

3.1. The Robot Arm
The articulated robot arm A465 [1], seen to the right in Figure 3.a, has six
rotating joints, which entails to six degrees of freedom (DOF) (Figure 3.b).
The word articulated means ‘provided with joints’ [2]. The actual definition
of DOF reads as follows; ‘DOF is one of the variables (maximum number of
six) required to define the motion of a body in space’ [3]. The elementary
motions that the body can have in relation to a coordinate system are
translation along the coordinate axis and rotation around the axis. In the case
of a Cartesian coordinate system, defining the three-dimensional space,
there are three orthogonal axes and thus a maximum of six degrees of
freedom. Since the arm has six DOF, it means that the end of the arm, where
the tool is mounted, is able to reach any point in the three dimensional space
and in any direction, as long as the point is inside the working area (Figure
3.c) of the robot. The number of joints, however, should not be confused
with the degrees of freedom. The degrees of freedom also depend on the
types of joints and how they are connected. A robot arm may even have
more than six joints, but still have a maximum of six degrees of freedom or
less. The robot arm described in this text may, for example, be fitted on a
track. It would then still have six degrees of freedom, but a larger working
area. Adding an extra joint also enables the arm to reach certain positions in

 15

several different ways. At the free end of the last link of the arm, there is a
tool flange where an end-effector [2] can be attached. This end-effector can
for example be a servo or a pneumatic gripper and in combination with
these a force and torque transducer can be installed (which will be treated
later on in Section 4.1).

Figure 3.b. The locations of the six rotating joints in the robot arm.

Figure 3.c. The working area is the space that is within reach for the tool tip.

This particular robot arm is capable of manipulating a nominal payload of 2
kg and a maximum payload of 3 kg. It has a repeatability of ± 0.05 mm.
This means that it is able to return to a specific point with an absolute error
less than 0.05 mm, even after several cycles. Repeatability should not be
mixed-up with accuracy [3]. Accuracy is the deviation between the desired
computed position and the actual attained position. There is no accuracy
stated for this robot, but generally it can be assumed that the repeatability is
better than the accuracy. Furthermore, the arm has the ability to move at a
maximum velocity of 4.5 m/s [1]. When performing linear or path motions,
the maximum velocity is reduced to 1 m/s. The arm joints are driven by DC
servo motors via harmonic drives, which provides gear reduction for higher
torque. The position of each joint is determined with optical encoders.

 16

3.2. The Robot Controller

Figure 3.d. The C500 robot controller from CRS Robotics Corporation.

The C500 robot controller unit (Figure 3.d) is the electronic heart of the
robot system [4]. Based on a 32-bit RISC [5] processor, it performs the
necessary calculations to control the motions of the robot arm. It is able to
simultaneously support up to eight robot axis and a gripper with an update
rate of 14 kHz (corresponding to an update time of 70 µs) per axis. It uses a
PID [6] regulator control algorithm and has either a trapezoidal or parabolic
velocity profile. In a trapezoidal profile, the motion accelerates linearly up
to a maximum speed and then decelerates linearly until it stops. A parabolic
profile has a parabolic accelerate phase and a parabolic decelerate phase. It
has the ability to compute several different types of paths, like joint
interpolated (point-to-point), straight line, continuous path and relative or
blended motion. The operating system and control parameters are stored in a
non-volatile FLASH EPROM [7] memory.

The robot controller can communicate with other peripherals via two serial
RS232 ports [8] with a standard speed of 38400 bps. It is possible to expand
the controller with additional parallel RISC-based processors to provide
high-speed communication. This option was used in the tests in this thesis to
connect the robot controller to the real-time force and torque sensor
equipment, see Section 4. In a similar way, a vision system can optionally
be connected. Furthermore, for the use of sensors and additional actuators,
the controller has 16 opto-isolated inputs and 12 opto-isolated outputs, 4
contact relays output and one PLC [9] interface.

There are four ways of managing the robot controller. It may receive
commands from the teach pendant, the front panel on the controller, the
terminal emulator on the host computer or from a program executed within
the controller. At any given time, the controller can be controlled from only
one source.

The most basic method is to use the teach pendant (Figure 3.e). This is a
hand-held robot control terminal that provides a means to move the robot,
edit and run robot programs. It has a four-line LCD display for presenting
and editing programs, locations, variables and for checking the status of the
robot. It is also equipped with an alphanumerical keyboard, an emergency
stop switch and a live-man switch (if released, the live-man switch will stop
the robot motion). The main use of the teach pendant however, is to move

 17

the robot manually in order to teach the robot locations which will then be
referred to in robot programs. These locations can be stored together with
programs and variables in the controller’s battery backed RAM memory
[10] with room for 256 kB.

Figure 3.e. The teach pendant.

The front panel can be utilized to start or stop program execution, homing
and for emergency stopping. The other two methods to manage the robot
controller; the use of a terminal emulator on a host computer or a robot
program that is executed within in the controller, will be described in the
following sections.

3.3. System Software
The programs that can be executed in the robot controller are written in
RAPL-2, which is an abbreviation for Robot Application Programming
Language [11]. The language is line-structured and similar to simple
programming languages like BASIC [12] and Pascal [13]. It allows, among
other things, for robot control, computations, storage of variables and
locations, logical operations, supervision of inputs and outputs, and
handling of subroutines. There are two methods to implement a program in
the controller. By using the teach pendant, one programming-line at the time
can be entered or edited. When implementing larger and more complex
programs however, it is better to edit the program in Windows on a host
computer and then download the complete program to the controller. The
procedures for writing and downloading programs are described in the next
Section. Another method for designing programs are the use of Process
Control Programming (PCP) [4] [14], which utilizes high level
programming (e.g. C/C++ [15]) and allows for a more efficient application
of the controller system.

 18

3.4. Host Computer

Figure 3.f. The host computer consists of an ordinary IBM-compatible PC, in this case
with a Pentium processor and the operative system Windows 95.

The host computer (Figure 3.f) consists of an ordinary IBM-compatible PC.
The computer used in these tests has a Pentium [16] processor and is using
the operative system Windows 95 [17]. Installed on the computer is the
robot communication software Robcomm for Windows (RCWIN) [18]. This
software enables the communication between the PC and the C500 robot
controller, using a 38400-bps serial connection. The most basic mode of
communication is the use of a terminal emulator utility that allows for
direct, low level communication with the control system. The software also
has the ability to manage the storage, retrieval and downloading of
programs, locations and variables. Furthermore it can control the execution
of programs in the controller and it also logs events and errors and performs
diagnostic tests of the user memory.

A text editor is used to write and edit the programs, which later are
downloaded to the controller. There is a text editor included in RCWIN, but
any other text editor is sufficient. As mentioned before, the programs are
written in RAPL-2 and will initially have the filename extension “.txt”. The
programs are then tokenized, i.e. the text code is converted to RAPL-2
mnemonic codes. After it has been tokenized, the filename will have the
extension “.rob”. The program is thereafter downloaded individually or
together with other programs, variable files (“’.var”) or locations files
(“.loc”) to the controller. Once the program is downloaded in the controller,
it can be started from either the teach pendant, the front panel, from RCWIN
or from another program on the host computer via the DDE [19] interface.

DDE stands for Dynamic Data Exchange and is an interface enabling
communication and data exchange between RCWIN (and hence the

 19

controller) and other programs like for example process controlling and
database software. In these tests, the DDE interface is used to connect
RCWIN to Microsoft Excel and Visual Basic for the purpose of launching
the test programs, and processing and storing the measured data provided by
the controller and the force and torque sensing equipment, see Chapter 5 for
a more detailed description of this issue.

 20

4. The Real-Time Force and Torque Sensor System
The force and torque sensor system [20] [21] is manufactured by ATI
Industrial Automation, North Carolina, USA. The system operates in two
different modes; force sampling mode and force control mode. In force
sampling mode, the force sensor provides information to the robot
controller, but plays no part in controlling the action of the robot. This is the
operating mode that was used in this thesis. In force control mode, the
sensor provides information to the control loop regulating the robot arm.
This allows for adaptive control of the forces the arm is exerting on
surrounding objects.

The system consists of the transducer, see Section 4.1, which is mounted on
the robot arm and does the actual force and torque sampling, and the F/T
controller, see Section 4.2, that process the sampled signals and
communicates with the robot controller.

4.1. The Transducer

Figure 4.a. The Force Torques Transducer at the end of the robot arm.

Figure 4.b. A closer look at the Gamma 15/50 transducer.

 21

The sensor part of the Gamma 15/50 transducer (
Figure 4.a and Figure 4.b) is composed of six compact monolithic silicon
strain-gage elements. The sensor is able to simultaneously measure all of the
six components of force and torque. The analog signals from the strain-
gages are low-pass filtered to prevent aliasing, multiplexed and amplified in
the transducer and sent to the F/T controller via an electrically shielded
cable.

The transducer is mounted between the tool flange on the end of the last link
of the robot arm and the tool. The sensor used in these tests is capable of
measure forces up to 130 N with a resolution of 0.10 N in the z-direction
and 65 N with a resolution of 0.05 N in the x- and y-directions. Torque is
measured up to 5 Nm with a resolution of 0.003 Nm. Furthermore it has an
overload protection able to withstand a force slightly more than 1 kN and a
torque of 90 Nm.

4.2. The F/T Controller

Figure 4.c. The primary function of the F/T controller is to convert analog strain gage
signals from the transducer to digital Cartesian force and torque components.

The low-pass filtered, multiplexed and amplified strain gage signals, is
transmitted from the transducer to the F/T controller’s 12-bit A/D converter.

 22

The now digitized signal is then sent forward to the CPU, which further
processes the data and then transfers the data via a 38400 bps RS-232C
interface to the robot controller. Since the A/D converter has 12 bits, the
final resolution of the measured force and torque components will be 1 /
4096 (212=4096).

When the sensor system measures all six components of force and torque,
which is the case in these tests, the sampling rate in the F/T controller is 750
Hz. However, this rate can be increased up to approximately 3000 Hz
depending on the number of components that is measured and the data-type
used. The factor determining the actual update rate in the robot controller
however, is the serial communication speed rather than the sampling rate. In
these tests the data is transmitted in ASCII [22] code with a rate of 38400
bps and this results in an update rate of 87 Hz in the robot controller. By
using binary code instead, it is possible to increase this to more than 500 Hz.

The data from the sensor system is made available to the robot controller as
part of an array of RAPL interface variables. This means that the data is
accessible in the same way as any other variables that are handled by the
robot controller. The reserved template name is ”FORCE” and is indexed
from 0 to 61. Some of the elements in the array are read-only variables and
these consist of the six Cartesian components of force and torque that the
transducer is subjected to. Among these variables are also the resultant force
and torque as well as the maximum sensed forces, moments and resultants
that has been recorded since the activation of the sensor system. All of these
mentioned data are well suited for the task of this work.

The other elements of the array are read or write variables. The majority of
these variables are used in conjunction with force control mode, which is
not used in this work.

 23

5. Supervisory Computer System
The supervisory computer system is essentially a program, written in Visual
Basic for Applications (VBA) [23], which is executed on a PC. The system
supervises the entire test sequence. It manage the user interface, commands
the robot system to initiate tests, then collects and stores the sampled data
and finally performs analysis on the data and presents the result to the user.

The computer is briefly described in Section 5.1 and the software that was
used to develop the computer program is presented in Section 5.2.

5.1. Hardware
The hardware is in this case the same PC that is utilized as host computer by
the robot system, see Chapter 3.4, which means that the supervisory
program and the robot communication program Robcomm run on the same
computer. This is convenient since it simplifies the necessary interaction
between the two programs by enabling them to communicate through the
Dynamic Data Exchange (DDE) interface.

5.2. Software Platform
The program was written in Visual Basic for Applications (VBA) version
5.0, which is included in Microsoft Excel version 95, Swedish edition.

VBA is basically an object-oriented language that is found in a couple of
Microsoft utility products like Excel as well as in the stand-alone software
development tool Visual Basic (VB). The difference is that programs
developed in VB are detached and can be used without any other programs
while programs developed in VBA included in Excel is closely connected to
this program and has to be run together with it, which is the case in this
work. Excel and VBA was chosen because it is reliable, well known, and
easy to maintain and migrate. It is possible for anyone with some
programming knowledge to edit and make changes in the program to adapt
it to a specific measurement situation. Another feature of Excel and
VB/VBA is the use of DDE for communication with other applications, as
mentioned in Section 3.4.

 24

6. Test Implementation
This chapter provides an overview of the complete testing system.

6.1. Test Objects
The selected push buttons (Figure 6.a) were mounted, facing upwards, on an
aluminum panel that was fixed on top of a table. They are referred to as
button numbers 1 to 5, starting with the one to the left. Button #1 had an
integrated rheostat wheel. Trying to measure this turning movement seemed
a difficult task for this initial system, so button #1 was therefore excluded
from the tests. Button #2 was of the “seesaw” type and was turned on by
pushing down on one end and turned off by pushing down on the other end.
Buttons #3 to #5 were activated by pushing down once and deactivated by
pushing down a second time. Only the “activation” phase was tested. The
buttons typically had a travel distance of 5-7 mm.

Figure 6.a. The push buttons used for the tests. Labelled #1 to #5 from left to right.

The rotary switches used in the test (Figure 6.b) were integrated on a
climate control panel that was fixed on top of a table. The panel was
mounted with an inclination of about 30° relative to the table. The rotary
switches were labelled #1 to #3, starting with the one to the left. Switches
#1 and #3 had a full travel of 180° (from position “9 o’clock” to “3 o’clock”
and “6 o’clock” to “12 o’clock”). The switch in the middle, number 2, had
no travel limitations and could thus be rotated continuously to the left or
right. All three switches had notches that could be felt when turning them.

 25

Figure 6.b. The rotary switches used for the tests. Labelled #1 to #3 from left to right.

6.2. Hardware
The robot arm was mounted on a table together with the switches (Figure
6.c).
At the free end of the last link of the arm, a force and torque transducer was
fitted to the tool flange. Then in turn, either a pin tool (Figure 6.d), or a
fork-shaped tool (Figure 6.e), was attached to the transducer. The pin tool
was used to press the push button switches and the fork-shaped tool was
used to turn the rotary switches. Some trials were initially made using a
servo gripper (Figure 6.f), but it appeared to be somewhat heavy and
cumbersome. The pin tool and the fork-shaped tool however, were light and
easily reached the switches. The obvious advantage of using a servo gripper,
however, would be avoiding the necessity to change tools and also be able
to test round buttons.

Figure 6.c. The robot arm mounted on a table together with the switches.

 26

Figure 6.d. The pin tool used to press the push button switches.

Figure 6.e. The fork-shaped tool used to turn rotary switches.

Figure 6.f. The servo gripper.

 27

6.3. Software
The software was created in VBA as described in Chapter 5.2. It was
developed in an object oriented fashion to be easier to adapt to different
measurement situations and future upgrades. The graphical user interface is
presented in Figures 6.g to 6.k. The Swedish language was used in the user
interface for labels and button names.

Figure 6.g. The layout of the Main Menu, with the button names in Swedish. The user can
select “Information”, “Settings”, “Measurement”, “Show Data”, “Show Diagram”, New
Test Object”, “Open”, “Save”, “Print” or “Quit”.

Figure 6.h. When selecting “Mätning” (“Measurement”) in the main menu, the following
menu is presented. Here the user can chose the number of measurements and enter the
name of the test person.

 28

Figure 6.i. This menu is shown when selecting “Nytt TestObjekt” (“New Test Object”) in
the main menu. The desired robot test program and switch type can be chosen, as well as
the length of the interpolation.

Figure 6.j. The menu for showing the result diagrams. The user can choose between
interpolated data or mean value data.

 29

Figure 6.k. The menu for showing the result data. The user can select original data,
interpolated data or mean value data.

The VBA software consists of a main module and several sub modules, see
Appendix A. The modules control the graphical user interface and handle
the communication with the robot code. It collects the data from the robot
and force/torque-system and finally processes that data and presents the data
to the user. It also handles errors that can result from e.g. communication
errors and numerical inconsistencies. In essential, it follows the desired
measurement procedure in Chapter 2.2.

When a test is executed, the VBA software transfers the necessary in-data to
the robot system and executes the robot program that in turn controls the
robot. The robot arms moves to a predetermined location close to the
selected test object. These locations have to be taught (with the function
“Teach”) by the operator before the tests, see Chapter 3.2. In case of a push
button, it starts to push on the button and at the same time samples the force.
When the force reaches a predetermined maximum value (when the button
is fully pressed down), it terminates the test and transfers the data back to
the VBA software.
It the test object is a rotary switch, the robot arm starts to turn the switch and
at the same time samples the torque. When the turning angle reaches a
predetermined maximum value, it terminates the test and transfers the data
back to the VBA software.

The movement of the buttons or switches during the sampling of position
and force or torque data could not be done in predefined steps. Instead the
movement was continuous during the sampling. This results in that the x-
location and angle were not measured at exactly predetermined uniform
increments. The x-location and angle is therefore interpolated into
predetermined steps.

 30

When sampling the results from consecutive tests, the mean values together
with the maximum and minimum values are stored.

The robot program (Appendix B) also consists of several sub modules, for
initialization, testing and recovery. The VBA modules activate these
programs. The predetermined positions for measuring different tests objects
are stored in the robot system by ‘teaching’ the system, see Chapter 3.2.

 31

7. Test Results, Analysis and Conclusions
The test results are presented in graphical form below starting with the push
buttons and then the rotary switches.

7.1. Test Results - Push Buttons
In the following diagrams, the distance (mm) and the correlating measured
force (N) are depicted on the x- and the y-axes. The Swedish terms “Väg-
Kraft Diagram”, Väg” and “Kraft” can be translated to “Distance-Force
Diagram”, “Distance” and “Force”.

Figure 7.a. Push Button #2. 1 measurement. Energy= 7.98 mJ.

Figure 7.b. Push Button #2. Max/Mean/Min values of 5 measurements.

 32

Figure 7.c. Push Button #3. 1 measurement, first test. Energy= 15.5 mJ.

 Figure 7.d. Push Button #3. Max/Mean/Min values of 200 measurements, first test.

 33

Figure 7.e. Push Button #3. 1 measurement, second test, 2 days after first test.
 Energy= 15.9 mJ.

Figure 7.f. Push Button #3. Max/Mean/Min values of 50 measurements, second test, 2 days
after first test.

 34

Figure 7.g. Push Button #4. 1 measurement. Energy= 8.64 mJ

Figure 7.h. Push Button #4. Max/Mean/Min values of 50 measurements.

 35

Figure 7.i. Push Button #5. 1 measurement. Energy= 7.10 mJ.

Figure 7.j. Push Button #5. Max/Mean/Min values of 5 measurements.

 36

7.2. Analysis - Push Buttons
The figures above show that each push button has a rather distinct profile. In
some cases the required force rises to a near constant value until the button
is fully pressed down (Figure 7.c). For other buttons, a higher initial force is
required (Figure 7.a).

Analysis of data from one measurement (Figure 7.c) to another one 2 days
later (Figure 7.e), using the Pearson Product-Moment Correlation [24] (in
Excel, Appendix C), gives a correlation coefficient of 0.98. Same analysis,
but using mean values (Figure 7.d and Figure 7.f), gives a correlation
coefficient of 0.99. This suggests that the tests are repeatable over time.

Another interesting property is the energy content of the button. How much
energy is used to press down the button? Since the travel (mm) and force
(N) are measured, the area under the graph (converted to standard scientific
units) should represent that energy. Using the trapezoidal numerical method
[25] (Appendix C), the energy content for pressing the buttons were
calculated and presented in the figures above. A comparison of the energy
levels between several tests on the same button also shows that the tests are
repeatable and that this property can be used to define the button profile.

The maximum and minimum values presented in the figures above indicate
that there is not much variation in the measured results from consecutive
tests.

 37

7.3. Test Results – Rotary Switches
In the diagrams below, the angle (degrees) and the correlating measured
torque (Ncm) are depicted on the x- and the y-axes. The Swedish terms
“Vinkel-Moment Diagram”, Vinkel” and “Moment” can be translated to
“Angle-Torque Diagram”, “Angle” and “Torque”.

Figure 7.k. Rotary switch #1. 1 measurement. First test. Energy= 51.2 mJ.

Figure 7.l. Rotary switch #1. Max/Mean/Min values of 100 measurements. First test.

 38

Figure 7.m. Rotary switch #1. 1 measurement. Second test, 3 weeks after first test.
Energy= 47.6 mJ.

Figure 7.n. Rotary switch #1. Max/Mean/Min values of 100 measurements. Second test, 3
weeks after first test.

 39

Figure 7.o. Rotary switch #2. 1 measurement. Energy= 37.8 mJ.

Figure 7.p. Rotary switch #2. Max/Mean/Min values of 5 measurements.

 40

Figure 7.q. Rotary switch #3. 1 measurement. Energy= 92.0 mJ.

 41

7.4. Analysis – Rotary Switches
Just as for the push buttons, the figures above show that the rotary switches
also have rather distinct profiles. It can be clearly seen that the graphs
correspond to the notches that can be felt when turning the rotary switches.

Analysis of data from one measurement (Figure 7.k) to another one 3 weeks
later (Figure 7.m), using the Pearson Product-Moment Correlation [24] (in
Excel, Appendix C), gives a correlation coefficient of 0.94. Same analysis,
but using mean values (Figure 7.l and Figure 7.n), gives a correlation
coefficient of 0.98. These tests also seem to be repeatable over time.

The energy required to turn the rotary switch should also be possible to
calculate. With the angle (in radians) and torque (Ncm) measured, the area
under the graph (converted to standard scientific units) should represent the
energy. Using the trapezoidal numerical method [25] (Appendix C), the
energy content for the rotary switches were calculated and presented in the
figures above. Also here, a comparison of the energy levels between several
tests on the same switch shows that the tests are repeatable and that this
property can be used to define the switch profile.

The maximum and minimum values presented in the figures above indicate
that there is not much variation in the measured results from consecutive
tests.

7.5. Conclusions
From the performed tests and result analysis, it can be concluded that:

• It is possible to measure the test objects as desired with a
standardized method using the articulated robot system equipped
with a force and torque sensor;

• The test objects have unique force or torque profiles;
• The tests are repeatable;
• Test objects can be measured and compared to standard objects,

which have a desired feeling, using the demonstrated profiles,
correlations and inherent energy;

• The standardized and flexible test method has the potential to
replace current subjective product tests and improve the
development and testing of user interfaces in cars.

 42

8. Discussion

8.1. Future Perspectives
The next step would be to have test persons define desirable profiles for
different types of buttons and switches to set model profiles. These could
then be used for comparison with future test objects.

The entire system can be developed towards more standardized test
procedures and ease of use, e.g.:

• Enhancing the graphical user interface;
• Developing the software for more types of test objects and options;
• Incorporating automatic correlation with model profiles;
• Standardized fixtures for holding the test objects and applying the

test probes at predefined locations;
• Adding entities to better be able to correlate to model objects, like

maximum and minimum allowed forces, maximum slope etc.;
• Faster tests by using high speed parallel ports for communication

and by using high level programming (PCP) in the robot programs;
• The standard deviation of the result could be calculated during the

sampling.

When testing rotary switches with distinctive notches, it might be better to
use a servo gripper, since it stays in contact with the switch at all times. The
fork shaped tool looses contact every time the switch snaps after the notch.
An alternative could be to use a tool that precisely fits the rotary switch
handle.

There are five standard transducers available from ATI with measurement
ranges from 12 N to 5000 N suitable for different measurement situations.
In this thesis work a more sensitive transducer would have been preferable
for better resolution, but the Gamma 15/50 transducer was the one at hand.

8.2. Specific Challenges
It has been a very challenging but interesting work. One of the first
challenges was to find out the different force and torque variables that were
measured by the transducer and the associated coordinate system.
One subject that accounted for many hours of trial and error was the
communication protocol (DDE) between the VBA software and the robot
controller. Since the sampling is performed in real-time during the robot
motion, the synchronization of all involved processes was crucial. In order
to stay synchronized, a solution was to check if the robot system was busy
or ready for new inputs and accordingly send ready signals to the processes.

The movement of the buttons or switches during the associated sampling of
position and force or torque data could not be done in predefined steps.
Instead the movement was continuous during the sampling. This movement

 43

is probably closer to reality when activating the buttons, but the drawback
was that the x-location and angle were not measured in exactly
predetermined uniform increments. The solution was to interpolate the
result and thus get uniform x-location and angle steps.

 44

9. References

[1] A465 Robot Arm User Manual. UMI-17-501-S, CRS Robotics

Corporation, Burlington, Ontario, Canada, 1996

[2] John J. Craig. Introduction to robotics. ISBN 0201095289, Addison-

Wesley Publishing Company, Palo Alto, California, USA, 1989

[3] Gunnar S. Bolmsjö. Industriell robotteknik. ISBN 9144285124,

Studentlitteratur, Lund, Sweden, 1992

[4] C500 Controller User Manual. UMI-17-556-S, CRS Robotics

Corporation, Burlington, Ontario, Canada, 1996

[5] http://cs.stanford.edu/people/eroberts/courses/

soco/projects/risc/whatis/index.html

[6] Torkel Glad, Lennart Ljung. Reglerteknik. ISBN 9789144022758,

Studentlitteratur, Lund, Sweden, 2006

[7] http://en.wikipedia.org/wiki/Flash_memory

[8] http://en.wikipedia.org/wiki/Serial_port

[9] http://en.wikipedia.org/wiki/Programmable_logic_controller

[10] http://en.wikipedia.org/wiki/Random-access_memory

[11] RAPL-2 Language Reference Guide. CRS Robotics Corporation,

Burlington, Ontario, Canada, 1996

[12] http://en.wikipedia.org/wiki/BASIC

[13] http://en.wikipedia.org/wiki/Pascal_(programming_language)

[14] Application Development Guide. CRS Robotics Corporation,

Burlington, Ontario, Canada, 1996

[15] http://www.iso.org/iso/home/store/catalogue_tc/

catalogue_detail.htm?csnumber=64029

[16] http://www.intel.se/content/www/se/sv/processors/pentium/pentium-

processor.html

[17] https://support.microsoft.com/en-us/kb/138349

[18] Robcomm User’s Guide. UMI-23-504, CRS Robotics Corporation,

Burlington, Ontario, Canada, 1996

 45

[19] https://msdn.microsoft.com/en-

us/library/windows/desktop/ms648774(v=vs.85).aspx

[20] Installation and operations manual for F/T. PN 9610-05-1001-11,

ATI Industrial Automation, Apex, North Carolina, USA, 1994

[21] Force Sensor User’s Guide. UMI-23-510, CRS Robotics Corporation,

Burlington, Ontario, Canada, 1996

[22] http://www.ascii-code.com

[23] https://msdn.microsoft.com/en-

us/library/office/ee814737(v=office.14).aspx

[24] http://www.excelfunctions.net/Excel-Correl-Function.html

[25] Torgil Ekman, Numeriska Metoder på Dator och Dosa.
 ISBN 9144262418, Studentlitteratur, Lund, Sweden, 1987

All websites were reachable at 10:30 CET 2015-05-20

 46

Appendix A

Visual Basic Applications (VBA) Code

VBA version 5.0, included in Microsoft Excel version 95, Swedish edition.

Allmän Initierad Som Bool

Sub Auto_öppna()
' Definierar sökvägar
 RobcommSökväg = "C:\crs\rcwin"
 ChDir RobcommSökväg
 Shell RobcommSökväg + "\robot.exe", 6
 AppActivate "Microsoft Excel"
End Sub

Sub Auto_stäng()
 Initierad = Falskt
End Sub

Sub Init()
' Initierar robotsystemet
 Vid Fel GåTill 10
 DDEKommando "ROBCOMM"; "RUN"; "Init"
 Initierad = Sant
Avsluta Sub
10:
MedRuta "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
Slut Sub

Sub Mätning(AntalMätningar)
' Körs när knappen “Mätning” aktiveras. Förbereder
' kalkylblad och kör sedan robotens testsekvens
' (Namn=RobotProgNamn) på testobjekt nr “Objekt”
' Detta utförs AntalMätningar ggr.
' Hämtar sedan Kraft eller Vridmoment arrayvariabel
 Vid Fel GåTill 50
 RobotProgNamn = Kalkylbladlista("Interpolerad
Data").Celler(11, 6).Val
 Object = Kalkylbladlista("Interpolerad
Data").Celler(12, 6).Val
 Typ = Kalkylbladlista("Data").Celler(4, 2).Val
 Kalkylbladlista("Data").Celler(8, 2).Val = Now

 47

 Kalkylbladlista("Interpolerad Data").Celler(8,
2).Val = Kalkylbladlista("Data").Celler(8, 2).Val
 Kalkylbladlista("Accumulerad Data").Celler(8,
2).Val = Kalkylbladlista("Data").Celler(8, 2).Val

 Kalkylbladlista("MedelVärde Data").Celler(8, 2).Val
= Kalkylbladlista("Data").Celler(8, 2).Val
 If Kalkylbladlista("Accumulerad Data").Celler(10,
2).Val = 0 Then
 Kalkylbladlista("Accumulerad Data").Celler(7,
2).Val = Kalkylbladlista("Data").Celler(8, 2).Val
 Kalkylbladlista("MedelVärde Data").Celler(7,
2).Val = Kalkylbladlista("Data").Celler(8, 2).Val
 End If
 Om Initierad = Falskt Så
 Init
 Vänta (5)
 Utför Medan RobotBusy = 1
 Loop
 Slut Om
 DDESättVariabel(“ROBCOMM”, “Object”, Object)
 For i = 1 To AntalMätningar
 Program.Skärmuppdatering = False
 DDEKommando "ROBCOMM", "RUN", RobotProgNamn
 Wait (30)
 Do While RobotBusy = 1
 Loop
 Select Case Typ
 Case "TryckKnapp"
 HämtaDataXKraft
 Case "Vred"
 HämtaDataFiMoment
 End Select
 Program.Skärmuppdatering = True
 Next
Avsluta Sub
50:
MedRuta "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
End Sub

Function RobotBusy()
 On Error GoTo 80
 RobotBusyDDE = HämtaDDETal("ROBCOMM", "VARIABLE",
"BUSY")
 RobotBusy =
KonvDDEVariableTillHeltal(RobotBusyDDE(1, 1))
Exit Function
80:
MsgBox "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
End Function

 48

Sub HämtaDataXKraft()
' Hämtar variabel-arrayerna för kraft och position
 'Vid Fel GåTill 90
 LOCAT = HämtaDDETal("ROBCOMM", "LOCARRAY", "LOCAT")
 KRAFT = HämtaDDETal("ROBCOMM", "VARARRAY", "KRAFT")
 LOCATSTART = KonvDDELocArrayTillDbl(LOCAT(1, 1), 2)
 KRAFTSTART = KonvDDEVarArrayTillDbl(KRAFT(1, 1))
 Kalkylbladlista("Data").Område(Area(11, 2, 500,
3)).RaderaInnehåll
 N = 1
 Do While KonvDDEVarArrayTillDbl(KRAFT(N, 1)) < 9990
 Kalkylbladlista("Data").Celler(N + 10, 2).Val =
(1) * (KonvDDELocArrayTillDbl(LOCAT(N, 1), 2) -
LOCATSTART)
 Kalkylbladlista("Data").Celler(N + 10, 3).Val =
(-0.27811) * (KonvDDEVarArrayTillDbl(KRAFT(N, 1)) -
KRAFTSTART)
 N = N + 1
 Loop
 Sampla N - 1
Avsluta Sub
90:
MedRuta "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
End Sub

Sub HämtaDataFiMoment()
' Hämtar variabel-arrayerna för vridmoment och position
 On Error GoTo 110
 LOCAT = HämtaDDETal("ROBCOMM", "LOCARRAY", "LOCAT")
 KRAFT = HämtaDDETal("ROBCOMM", "VARARRAY", "KRAFT")
 VinkelStart = 57.29578 *
(KonvDDELocArrayTillDbl(LOCAT(1, 1), 6))
 KRAFTSTART = KonvDDEVarArrayTillDbl(KRAFT(1, 1))
 Kalkylbladlista("Data").Område(Area(11, 2, 500,
3)).RaderaInnehåll
 N = 1
 Do While KonvDDEVarArrayTillDbl(KRAFT(N, 1)) < 9990
 Vinkel = 57.29578 *
(KonvDDELocArrayTillDbl(LOCAT(N, 1), 6))
 If Vinkel - VinkelStart < -0.2 Then
 Vinkel = Vinkel + 360
 ElseIf Vinkel - VinkelStart > 360 Then
 Vinkel = Vinkel - 359.9
 End If
 Kalkylbladlista("Data").Celler(N + 10, 2).Val =
Vinkel - VinkelStart ' - 359,9

 49

 Kalkylbladlista("Data").Celler(N + 10, 3).Val =
(-0.706408) * (KonvDDEVarArrayTillDbl(KRAFT(N, 1)) -
KRAFTSTART)
 N = N + 1
 Loop
 Sampla N - 1
Exit Sub
110:
MsgBox "Ett fel har uppstått!! Prova igen. (110)"
VisaHuvudMeny
End Sub

Function KonvDDEVarArrayTillDbl(DDETal)
' Konverterar variabel från sträng till dubbelvariable
 On Error GoTo 120
 A = InStr(1, DDETal, ",", 0)
 u_b = Len(DDETal)
 DDETalxx = Right(DDETal, (u_b - A))
 C = InStr(1, DDETalxx, ".", 0)
 Mid(DDETalxx, C, 1) = ","
 KonvDDEVarArrayTillDbl = CDbl(DDETalxx)
Exit Function
120:
MsgBox "Ett fel har uppstått!! Prova igen. (120)"
VisaHuvudMeny
End Function

Function KonvDDELocArrayTillDbl(DDETal, AntalKomma)
' Konverterar variabel från sträng till dubbelvariable
 On Error GoTo 121
 aa = 1
 For i = 1 To AntalKomma
 A = InStr(aa, DDETal, ",", 0)
 aa = A + 1
 Next
 u_b = InStr(aa, DDETal, ",", 0)
 DDETalxx = Mid(DDETal, aa, (u_b - aa))
 C = InStr(1, DDETalxx, ".", 0)
 Mid(DDETalxx, C, 1) = ","
 KonvDDELocArrayTillDbl = CDbl(DDETalxx)
Exit Function
121:
MsgBox "Ett fel har uppstått!! Prova igen.(121)"
VisaHuvudMeny
End Function

Function KonvDDEVariableTillHeltal(DDETal)
' Konverterar variabel från sträng till heltal

 50

 On Error GoTo 130
 A = InStr(1, DDETal, ",", 0)
 u_b = Len(DDETal)
 DDETalxx = Right(DDETal, (u_b - A))
 C = InStr(1, DDETalxx, ".", 0)
 Mid(DDETalxx, C, 1) = ","
 KonvDDEVariableTillHeltal = CInt(DDETalxx)
Exit Function
130:
MsgBox "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
End Function

Function HämtaDDETal(Application, Topic, Item)
' Funktionen öppnar en DDE-förbindelse med
' programmet:Application, hämtar
' en variabel:Item och stänger därefter DDE-
' förbindelsen.
'"Application" , Tex: "ROBCOMM"
'"Topic" , Tex: "VARIABLE"
'"Item" , Tex: "BUSY"
 On Error GoTo 140
 DDEKanal = DDEInitiera(Application, Topic)
 HämtaDDETal = DDEBegär(DDEKanal, Item)
 DDEAvsluta (DDEKanal)
 DDEKommando Application, "REREAD", "ALL"
Exit Function
140:
MsgBox "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
End Function

Sub DDEKommando(Application, Topic, Item)
' Subrutinen öppnar en DDE-förbindelse med
' programmet:Application, utför
' ett kommando:Topic (eventuellt på programnamnet:Item)
' och stänger därefter DDE-förbindelsen.
'"Application" , Tex: "ROBCOMM"
'"Topic" , Tex: "RUN"
'"Item" , Tex: "Main"
 On Error GoTo 150
 DDEKanal = DDEInitiera(Application, Topic)
 DDEUtför DDEKanal, Item
 DDEAvsluta (DDEKanal)
Exit Sub
150:
MsgBox "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
End Sub

 51

Sub DDESättVariabel(Application, VarName, VarValue)
' Subrutinen öppnar en DDE-förbindelse med
' programmet:Application, sätter en variabel ‘VarName’
' till värdet VarValue och stänger därefter DDE
' -förbindelsen.
' "Application" , Tex: "ROBCOMM"
' "VarName" , Ett variabelnamn
' VarValue, Värdet på variabeln
 sTmpString = ""
 For nCounter = 1 To 8 - Len(sVarName)
 sTmpString = sTmpString & Chr(32)
 Next nCounter
 Item = CStr(VarName & TmpString & "," & VarValue)
 On Error GoTo 150
 DDEKanal = DDEInitiera(Application, “VARIABLE”)
 DDEPoke DDEKanal, Item
 DDEAvsluta (DDEKanal)
Exit Sub
150:
MsgBox "Ett fel har uppstått!! Prova igen."
VisaHuvudMeny
End Sub

Sub Inställningar()
 InställRuta = Indataruta("Ange lösenord:";
"Inställningar")
 Om InställRuta = "crs" Så Init
Slut Sub

Sub Wait(VäntaTid)
'Fördröjning i "VäntaTid" sekunder
 KlarTid = Timer + VäntaTid
 If KlarTid > 86400 Then KlarTid = KlarTid - 86400
 Do Until Timer > KlarTid
 ' Tillåt systemet att utföra andra uppgifter
 DoEvents
 Loop
End Sub

Sub Sampla(N)
' Interpolerar data (Antal datapunkter: N) för kontakt
' nr:"TestObjekt".
' "Step" är den önskade steglängden.
 xx = 0#
 u_Step = Kalkylbladlista("Interpolerad
Data").Celler(10, 6).Val

 52

 StepInv = 1 / u_Step
 AntalUtfMät = Kalkylbladlista("Accumulerad
Data").Celler(10, 2).Val + 1
 Kalkylbladlista("Accumulerad Data").Celler(10,
2).Val = AntalUtfMät
 Kalkylbladlista("MedelVärde Data").Celler(10,
2).Val = AntalUtfMät
 Kalkylbladlista("HuvudMeny").Celler(1, 1).Val =
AntalUtfMät
 For i = 1 To (N - 1)
x1 = Kalkylbladlista("Data").Celler(i + 10, 2).Val
 x2 = Kalkylbladlista("Data").Celler(i + 11,
2).Val
 y1 = Kalkylbladlista("Data").Celler(i + 10,
3).Val
 y2 = Kalkylbladlista("Data").Celler(i + 11,
3).Val
 If x1 <> x2 Then
 k = (y2 - y1) / (x2 - x1)
 Do While xx < x2
 yy = k * (xx - x1) + y1
 Kalkylbladlista("Interpolerad
Data").Celler((xx * StepInv) + 11, 2).Val = xx
 Kalkylbladlista("Interpolerad
Data").Celler((xx * StepInv) + 11, 3).Val = yy
 AntalMät = Kalkylbladlista("Accumulerad
Data").Celler((xx * StepInv) + 13, 4).Val + 1
 Kalkylbladlista("Accumulerad
Data").Celler((xx * StepInv) + 13, 4).Val = AntalMät
 gyy = Kalkylbladlista("Accumulerad
Data").Celler((xx * StepInv) + 13, 3).Val
 Kalkylbladlista("Accumulerad
Data").Celler((xx * StepInv) + 13, 2).Val = xx
 Kalkylbladlista("Accumulerad
Data").Celler((xx * StepInv) + 13, 3).Val = yy + gyy
 Kalkylbladlista("MedelVärde
Data").Celler((xx * StepInv) + 14, 2).Val = xx
 Kalkylbladlista("MedelVärde
Data").Celler((xx * StepInv) + 14, 3).Val = (yy + gyy)
/ AntalMät
 If AntalMät = 1 Then
 Kalkylbladlista("MedelVärde
Data").Celler((xx * StepInv) + 14, Kol + 4).Val = yy
 Kalkylbladlista("MedelVärde
Data").Celler((xx * StepInv) + 14, Kol + 5).Val = yy
 End If
 If yy < Kalkylbladlista("MedelVärde
Data").Celler((xx * StepInv) + 14, 4).Val Then
Kalkylbladlista("MedelVärde Data").Celler((xx *
StepInv) + 14, Kol + 4).Val = yy
 If yy > Kalkylbladlista("MedelVärde
Data").Celler((xx * StepInv) + 14, 5).Val Then
Kalkylbladlista("MedelVärde Data").Celler((xx *
StepInv) + 14, Kol + 5).Val = yy

 53

 xx = xx + u_Step
 Loop
 End If
 Next
End Sub

Function Area(Rad÷V, Kol÷V, RadUH, KolUH)
 Area = Chr(Kol÷V + 64) + CStr(Rad÷V) + ":" +
Chr(KolUH + 64) + CStr(RadUH)
End Function

Sub InitTyp(Typ)
' Förbereder kalkylbladslistor och diagram
 Select Case Typ
 Case "TryckKnapp"
 'Step =
 With AktivArbetsbok
 With Kalkylbladlista("Data")
 .Celler(10, 2).Val = "Väg (mm)"
 .Celler(10, 3).Val = "Kraft (N)"
 .Kolumner("B").Kolumnbredd = 8.43
 .Kolumner("C").Kolumnbredd = 8.43
 End With
 With Kalkylbladlista("Interpolerad Data")
 .Celler(10, 2).Val = "Väg (mm)"
 .Celler(10, 3).Val = "Kraft (N)"
 .Kolumner("B").Kolumnbredd = 8.43
 .Kolumner("C").Kolumnbredd = 8.43
 End With
 With Kalkylbladlista("Accumulerad Data")
 .Celler(12, 2).Val = "Väg (mm)"
 .Celler(12, 3).Val = "Kraft (N)"
 .Kolumner("B").Kolumnbredd = 8.43
 .Kolumner("C").Kolumnbredd = 8.43
 End With
 With Kalkylbladlista("MedelVärde Data")
 .Celler(12, 2).Val = "Väg (mm)"
 .Celler(12, 3).Val = "Kraft (N)"
 .Kolumner("B").Kolumnbredd = 8.43
 End With
 With Diagramlista("Diagram Data")
 .Diagramrubrik.Titel = "Väg-Kraft
Diagram"
 .Axlar(xlKategori).Axelrubrik.Titel =
"Väg (mm)"
 .Axlar(xlVärde).Axelrubrik.Titel =
"Kraft (N)"
 End With
 With Diagramlista("Diagram MedelVärde
Data")

 54

 .Diagramrubrik.Titel = "Väg-Kraft
Diagram"
 .Axlar(xlKategori).Axelrubrik.Titel =
"Väg (mm)"
 .Axlar(xlVärde).Axelrubrik.Titel =
"Kraft (N)"
 End With
 End With
 Case "Vred"
 With AktivArbetsbok
 With Kalkylbladlista("Data")
 .Celler(10, 2).Val = "Vinkel(o)"
 .Celler(10, 3).Val = "Moment (N-cm)"
 .Kolumner("B").Kolumnbredd = 8.43
 .Kolumner("C").Kolumnbredd = 14
 End With
 With Kalkylbladlista("Interpolerad Data")
 .Celler(10, 2).Val = "Vinkel(o)"
 .Celler(10, 3).Val = "Moment (N-cm)"
 .Kolumner("B").Kolumnbredd = 8.43
 .Kolumner("C").Kolumnbredd = 14
 End With
 With Kalkylbladlista("Accumulerad Data")
 .Celler(12, 2).Val = "Vinkel(o)"
 .Celler(12, 3).Val = "Moment (N-cm)"
 .Kolumner("B").Kolumnbredd = 8.43
 .Kolumner("C").Kolumnbredd = 14
 End With
 With Kalkylbladlista("MedelVärde Data")
 .Celler(12, 2).Val = "Vinkel(o)"
 .Celler(12, 3).Val = "Moment (N-cm)"
 .Kolumner("B").Kolumnbredd = 8.43
 End With
 With Diagramlista("Diagram Data")
 .Diagramrubrik.Titel = "Vinkel-Moment
Diagram"
 .Axlar(xlKategori).Axelrubrik.Titel =
"Vinkel (o)"
 .Axlar(xlVärde).Axelrubrik.Titel =
"Moment (N-cm)"
 End With
 With Diagramlista("Diagram MedelVärde
Data")
 .Diagramrubrik.Titel = "Vinkel-Moment
Diagram"
 .Axlar(xlKategori).Axelrubrik.Titel =
"Vinkel (o)"
 .Axlar(xlVärde).Axelrubrik.Titel =
"Moment (N-cm)"
 End With
 End With
 End Select
End Sub

 55

Sub NyttTestObjekt_Knapp()
 Dialogbladlista("Dialog3").Visa
End Sub

Sub NyttTestObjektOK_Knapp()
' Skapar nytt testobjekt och förbereder kalkyl-
' bladslistor
 GammalSökväg = "C:\crs\userprog\prog_1\excel"
 GammaltFilNamn = Kalkylbladlista("Data").Celler(3,
2).Val
 AktivArbetsbok.SparaKopiaSom GammalSökväg + "\" +
GammaltFilNamn + ".XLS"
 Kalkylbladlista("Data").Celler(3, 2).Val =
Dialogbladlista("Dialog3").Redigeringsrutor("17").u_Tex
t
 Kalkylbladlista("Data").Celler(4, 2).Val =
Kalkylbladlista("Info").Celler(Dialogbladlista("Dialog3
").NedrullbaraListrutor("24").Val + 5, 3).Val
 Kalkylbladlista("Data").Celler(5, 2).Val = Now
 Kalkylbladlista("Data").Celler(6, 2).Val =
Dialogbladlista("Dialog3").Redigeringsrutor("28").u_Tex
t
 InitTyp (Kalkylbladlista("Data").Celler(4, 2).Val)
 Dialogbladlista("Dialog3").Dölj
 AktivArbetsbok.Bladlista("HuvudMeny").Aktivera
 Kalkylbladlista("Data").Område(Area(11, 2, 500,
3)).RaderaInnehåll
 Kalkylbladlista("Data").Område(Area(7, 2, 8,
2)).RaderaInnehåll
 Kalkylbladlista("Interpolerad
Data").Område(Area(11, 2, 500, 3)).RaderaInnehåll
 Kalkylbladlista("Interpolerad Data").Område(Area(7,
2, 8, 2)).RaderaInnehåll
 Kalkylbladlista("Accumulerad Data").Område(Area(13,
2, 500, 4)).RaderaInnehåll
 Kalkylbladlista("Accumulerad Data").Område(Area(7,
2, 8, 2)).RaderaInnehåll
 Kalkylbladlista("MedelVärde Data").Område(Area(14,
2, 500, 5)).RaderaInnehåll
 Kalkylbladlista("MedelVärde Data").Område(Area(7,
2, 8, 2)).RaderaInnehåll
 Kalkylbladlista("Interpolerad Data").Celler(3,
2).Val = Kalkylbladlista("Data").Celler(3, 2).Val
 Kalkylbladlista("Interpolerad Data").Celler(4,
2).Val = Kalkylbladlista("Data").Celler(4, 2).Val
 Kalkylbladlista("Interpolerad Data").Celler(5,
2).Val = Kalkylbladlista("Data").Celler(5, 2).Val
 Kalkylbladlista("Interpolerad Data").Celler(6,
2).Val = Kalkylbladlista("Data").Celler(6, 2).Val

 56

 Kalkylbladlista("Interpolerad Data").Celler(10,
6).Val =
Kalkylbladlista("Info").Celler(Dialogbladlista("Dialog3
").NedrullbaraListrutor("32").Val + 5, 5).Val
 Kalkylbladlista("Interpolerad Data").Celler(11,
6).Val =
Dialogbladlista("Dialog3").Redigeringsrutor("37").u_Tex
t
 Kalkylbladlista("Accumulerad Data").Celler(3,
2).Val = Kalkylbladlista("Data").Celler(3, 2).Val
 Kalkylbladlista("Accumulerad Data").Celler(4,
2).Val = Kalkylbladlista("Data").Celler(4, 2).Val
 Kalkylbladlista("Accumulerad Data").Celler(5,
2).Val = Kalkylbladlista("Data").Celler(5, 2).Val
 Kalkylbladlista("Accumulerad Data").Celler(6,
2).Val = Kalkylbladlista("Data").Celler(6, 2).Val
 Kalkylbladlista("Accumulerad Data").Celler(10,
2).Val = 0
 Kalkylbladlista("MedelVärde Data").Celler(3, 2).Val
= Kalkylbladlista("Data").Celler(3, 2).Val
 Kalkylbladlista("MedelVärde Data").Celler(4, 2).Val
= Kalkylbladlista("Data").Celler(4, 2).Val
 Kalkylbladlista("MedelVärde Data").Celler(5, 2).Val
= Kalkylbladlista("Data").Celler(5, 2).Val
 Kalkylbladlista("MedelVärde Data").Celler(6, 2).Val
= Kalkylbladlista("Data").Celler(6, 2).Val
 Kalkylbladlista("MedelVärde Data").Celler(10,
2).Val = 0
End Sub

Sub NyttTestObjektAvbryt_Knapp()
 Dialogbladlista("Dialog3").Dölj
 AktivArbetsbok.Bladlista("HuvudMeny").Aktivera
End Sub

Sub Öppna_Knapp()
 filAttÖppna = Program.HämtaÖppnaFilnamn("Excel
(*.xls),*.xls")
 If filAttÖppna <> False Then
 Arbetsböcker.Öppna filnamn:=filAttÖppna
 End If
End Sub

Sub Spara_Knapp()
 GammalSökväg = "C:\crs\userprog\prog_1\excel"
 GammaltFilNamn = Kalkylbladlista("Data").Celler(3,
2).Val

 57

 AktivArbetsbok.SparaKopiaSom GammalSökväg + "\" +
GammaltFilNamn + ".XLS"
End Sub

Sub SkrivUt_Knapp()
' Ej aktiverad. Printfunktion finns inkorporerad i
' Excel
End Sub

Sub Avsluta_Knapp()
 End
End Sub

Sub Mätning_Knapp()
 Dialogbladlista("Dialog4").Visa
End Sub

Sub MätningOK_Knapp()
 Kalkylbladlista("Data").Celler(7, 2).Val =
Dialogbladlista("Dialog4").Redigeringsrutor("8").u_Text
 Kalkylbladlista("Interpolerad Data").Celler(7,
2).Val = Kalkylbladlista("Data").Celler(7, 2).Val
 Dialogbladlista("Dialog4").Dölj
 Mätning
CInt(Dialogbladlista("Dialog4").Redigeringsrutor("10").
u_Text)
End Sub

Sub MätningAvbryt_Knapp()
 Dialogbladlista("Dialog4").Dölj
End Sub

Sub VisaData_Knapp()
 Dialogbladlista("Dialog1").Visa
End Sub

Sub VisaDiagram_Knapp()
 Dialogbladlista("Dialog2").Visa
End Sub

 58

Sub OriginalData_Knapp()
 Dialogbladlista("Dialog1").Dölj
 AktivArbetsbok.Kalkylbladlista("Data").Aktivera
End Sub

Sub InterpoleradData_Knapp()
 Dialogbladlista("Dialog1").Dölj
 AktivArbetsbok.Kalkylbladlista("Interpolerad
Data").Aktivera
End Sub

Sub MedelvärdesbehandladData_Knapp()
 Dialogbladlista("Dialog1").Dölj
 AktivArbetsbok.Kalkylbladlista("MedelVärde
Data").Aktivera
End Sub

Sub VisaDataAvbryt_Knapp()
 Dialogbladlista("Dialog1").Dölj
 AktivArbetsbok.Bladlista("HuvudMeny").Aktivera
End Sub

Sub Information_Knapp()
' Ej aktiverad
End Sub

Sub Inställningar_Knapp()
' Ej aktiverad
End Sub

Sub VisaDiagramData()
 Dialogbladlista("Dialog2").Dölj
 AktivArbetsbok.Bladlista("Diagram Data").Aktivera
End Sub

Sub VisaDiagramMVData()
 Dialogbladlista("Dialog2").Dölj

 59

 AktivArbetsbok.Bladlista("Diagram MedelVärde
Data").Aktivera
End Sub

Sub VisaDiagramAvbryt_Knapp()
 Dialogbladlista("Dialog2").Dölj
 AktivArbetsbok.Bladlista("HuvudMeny").Aktivera
End Sub

Sub VisaHuvudMeny()
 AktivArbetsbok.Bladlista("HuvudMeny").Aktivera
End Sub

///

 60

Appendix B

Robot Files

Robot Code (RAPL-2 Code), executed in Robcomm 4.30.

INIT.TXT
; Program Name: Init
;
; Initializes the robot system and sets the speed
;
! BUSY = 1
;
POSE FUN
PASSWORD 255
@CLINSPD 40.0
PASSWORD 0
SPEED 30
READY
FINISH
GOSUB FON
GOSUB ERASER
;
! BUSY = 0
;
STOP
$

FON.TXT
; Program Name: FON
;
; Initializes the Force and Torque sensor
;
SENSOR FORCE INZ ; initialize the sensor memory
SENSOR FORCE ON ; turn on the sensor sampling
RETURN
$

ERASER.TXT
; Program Name: ERASER
;
; Erases all values in the array DVAR and the array
; DLOCN
;
! N = 1
DO

 61

 DVAR KRAFT[N]
 DLOCN LOCAT[N]
 ++ N
UNTIL N > MAXNUMB
! MAXNUMB = 1
RETURN
$

MAX.TXT
; Program Name: MAX
;
; Collects the maximum forces that was measured
;
! MAXX=FORCE[42]
! MAXT=FORCE[45]
STOP
$

RECOVER.TXT
; Program Name: Recover
;
; Resets the system
;
PASSWORD 255
@CLINSPD 40.0
PASSWORD 0
$

PushButton.TXT
; Program Name: PushButton
;
; This program does the actual measurement of
; a push button, designated ‘Object’
; The operator have to define a start position
; ‘PBStart(Object)’ and an end position
; ‘PBEnd(Object)’ for each test object.
;
! BUSY = 1
POSE FUN
GOSUB FON
SENSOR FORCE FRAME RAW
;
! MAXFOZ = 3.596 * MAXFN1 ; Converts from N to Oz
! MAXCONOZ = 3.596 *MAXCONN ; Converts from N to Oz
SPEED 50
MOVE PBStart[Object] ; Move to start position
FINISH
SENSOR FORCE CALIBRATE X

 62

! STARTF = FORCE[0]
SPEED 10
MOVE PBEnd[Object] ; Start pushing on the switch
; ***
; SAFETY!!!! Interrupts if anything in the path
; (if force more than max allowed force) !!!
! C = 0
DO
 IF ABS(FORCE[0] - STARTF) > MAXCONOZ THEN 100
 ++ C
UNTIL C > 100
FINISH
; ***
;
! COUNT = 1
PASSWORD 255
@CLINSPD MAXLNSPD
SENSOR FORCE CALIBRATE X
! STARTF = FORCE[0]
SPEED SPEED1
Z DEPTH1,S
10 ACTUAL LOCAT[COUNT]
 ! KRAFT[COUNT] = FORCE[0] - STARTF
 IF ABS(FORCE[0] - STARTF) > MAXFOZ THEN 20
 ++ COUNT
GOTO 10
20 HALT
;
! KRAFT[COUNT + 1] = 9999
! BUSY = 0
@CLINSPD 40.0
PASSWORD 0
SPEED 30
MOVE PBEnd[Object]
FINISH
SPEED 50
MOVE PBStart[Object]
FINISH
;
GOTO 200
100 HALT
SPEED 50
MOVE PBStart [Object]
FINISH
200 ! BUSY = 0
IF COUNT > MAXNUMB THEN 999
STOP
;
999 ! MAXNUMB = COUNT
STOP
$

 63

RotarySwitch.TXT
; Program Name: RotarySwitch
;
; This program does the actual measurement of
; a rotary switch, designated ‘Object’
; The operator have to define start positions
; ‘RWStart1(Object)’, ‘RWStart2(Object)’ and an end
; position ‘RSEnd(Object)’ for each test object.
;
! BUSY = 1
POSE FUN
GOSUB FON
SENSOR FORCE FRAME RAW
;
! MAXFOZ = 3.596 * MAXFN3 ; Converts from N to Oz
! MAXCONOZ = 3.596 * MAXCONN ; Converts from N to Oz
! VINKE12R = VINKE12 / 57.29578 ; Conv degrees to rad
SPEED 50
MOVE RWStart1[Object] ; Move to start position
MOVE RWStart2[Object]
FINISH
SENSOR FORCE CALIBRATE X
! STARTF = FORCE[0]
SPEED 10
MOVE RSEnd[Object] ; Start turning the switch
; ***
; SAFETY!!!! Interrupts if anything in the path
; (if force more than max allowed force) !!!
! C = 0
DO
 IF ABS(FORCE[0] - STARTF) > MAXCONOZ THEN 100
 ++ C
UNTIL C > 50
FINISH
; ***
;
! COUNT = 1
SPEED 50
ROLL VINKE11
FINISH
! STARTF = FORCE[3]
ACTUAL STARTL
! A = TCOMP(STARTL)
! VINKSLUT = TCOMP(STARTL) + VINKE12R
IF VINKSLUT < (-3.141592) THEN 300
IF VINKSLUT > 3.141592 THEN 350
5 SPEED SPEED3
ROLL VINKE12
DO
 ACTUAL LOCAT[COUNT]
 ! HAR = TCOMP(LOCAT[COUNT])
 ! KRAFT[COUNT] = FORCE[3] - STARTF
 IF ABS(FORCE[3] - STARTF) > MAXFOZ THEN 20
 ++ COUNT

 64

UNTIL ABS(HAR - VINKSLUT) < 0.02
! KRAFT[COUNT] = 9999
! BUSY = 0
SPEED 50
ROLL -(VINKE11 + VINKE12 + VINKE13)
ROLL VINKE13
MOVE RWStart1[Object]
FINISH
IF COUNT > MAXNUMB THEN 999
STOP
;
20 HALT
! KRAFT[COUNT + 1] = 9999
! BUSY = 0
SPEED 50
MOVE RSEnd[Object]
FINISH
ROLL -VINKE13
ROLL VINKE13
MOVE RWStart1[Object]
FINISH
IF COUNT > MAXNUMB THEN 999
STOP
;
100 HALT
SPEED 50
MOVE RWStart1[Object]
FINISH
STOP
;
300 ! VINKSLUT = VINKSLUT + 6.28318
GOTO 5
350 ! VINKSLUT = VINKSLUT - 6.28318
GOTO 5
;
999 ! MAXNUMB = COUNT
STOP
$

 65

Appendix C

Formulas and Conversions

Formulas

The Pearson Product-Moment Correlation Coefficient [24] for two sets of
values, calculated using the formula “Correlation” in Excel:

𝑟 = ∑ ! ! ! ! ! !

∑ ! ! ! ! ∑ ! ! ! !

The Trapezoidal numerical method [25] for calculating the area under the
graph:

𝑓 𝑥 𝑑𝑥
!

!
 ≈

1
2 (𝑥!!! – 𝑥!

!

!!!

)(𝑓 𝑥!!! + 𝑓(𝑥!))

Conversions

The Force and Torque sensors are calibrated in Ounce (Oz), OzInch and
radians (rad). In the robot code these units are converted to N, Ncm and
degrees as follows:

1 N ≈ 3.596 Oz
(1 Oz ≈ 28.35 g ≈ 0.2781 N)

1 Ncm ≈ 1.4156 OzInch
(1 OzInch ≈ 0.7064 Ncm)

1 rad = 360/2π ≈ 57.296 degrees

